
Existence and Exponential Stability of Anti-periodic Solutions for A
Cellular Neural Networks with Impulsive Effects

CHANGJIN XU
Guizhou University of Finance

and Economics
Guizhou Key Laboratory of Economics

System Simulation
Longchongguan Street 276, 550004 Guiyang

CHINA
xcj403@126.com

XINLIAO MAO
University of South China

School of Mathematics and Physics
Changsheng Road 28, 421001 Hengyang

CHINA
maoxinliao@163.com
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1 Introduction

Due to the promising potential applications in pattern
recognition, associative memory, image processing
and reconstruction of moving images, cellular neu-
ral networks have been intensively investigated [1-
19]. It is well known that high-order neural net-
works have strong approximation property, faster con-
vergence rate, greater storage capacity, and higher
fault tolerance than lower-order neural networks. In
recent years, high-order neural networks have been
the object of intensive investigation by numerous au-
thors. Many results on the problem of global sta-
bility of equilibrium points and periodic solutions of
high-order neural networks have been reported (see
[20-28]). In applied sciences, the existence of anti-
periodic solutions plays a key role in characterizing
the behavior of nonlinear differential equations [29-
32]. Recently, there are some papers which deal with
the problem of existence and stability of anti-periodic
solutions (see [33-60]). In addition, we know that
many evolutionary processes exhibit impulsive effects
which are usually subject to short time perturbations
whose durations may be neglected in comparison with
durations of the processes [53]. This motivates us to
consider the existence and stability of anti-periodic
solutions for cellular neural networks with impulses.
To the best of our knowledge, very few authors have
focused on the problems of anti-periodic solutions for
such impulsive cellular neural networks. In this paper,
we consider the anti-periodic solution of the following

cellular neural networks with delays and impulses





ẋi(t) = −di(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t))

+
n∑

j=1

bij(t)fj(xj(t− τij(t)))

+
n∑

j=1

cij(t)
∫ t

−∞
kij(t− s)

× fj(xj(s))ds + Ii(t), t 6= tk,
xi(t+k ) = (1 + δik)xi(tk), k = 1, 2, . . . ,

(1)

where i = 1, 2, · · · , n, aij , bij , cij are constants,
τij(t)(i, j = 1, 2, · · · , n are nonnegative continuous
functions with 0 ≤ τij(t) ≤ τ , for some con-
stant τ , and n-tuple (x1(t0, x2(t), · · · , xn(t))T ∈
Rn denotes the state of the networks at time t.
f(x) = (f1(x), f2(x), . . . , fn(x))T : Rn → Rn is
a nonlinear vector-valued activation function, I(t) =
(I1(t), I2(t), · · · , In(t))T ∈ Rn is an input vector
function. The delay kernel kij : R+ → R+ are real
valued nonnegative continuous functions that satisfy
the following conditions:

(i)
∫ ∞

0
|kij(s)|ds ≤ k+

ij ,

where k+
ij is a positive constant.

The main purpose of this paper is to give the suf-
ficient conditions of existence and exponential stabil-
ity of anti-periodic solution of system (1). Some new
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sufficient conditions for the existence, unique and ex-
ponential stability of anti-periodic solutions of system
(1) are established. Our results not only can be applied
directly to many concrete examples of cellular neural
networks, but also extend, to a certain extent, the re-
sults in some previously known ones. In addition, an
example is presented to illustrate the effectiveness of
our main results.

For convenience, we introduce some notations as
follows.

aij = sup
t∈R

|aij(t)|, bij = sup
t∈R

|bij(t)|,

cij = sup
t∈R

|cij(t)|, Ii = sup
t∈R

|Ii(t)|,

d−i = min
t∈R

|di(t)|, τ = sup
t∈R

max
1≤i,j≤n

{τij(t)}.

Throughout this paper, we assume that

(H1) For i, j = 1, 2, · · · , n, aij , bij , cij , Ii, fj : R →
R, di, τij : R → [0,+∞) are continuous functions,
and there exist a constant T > 0 such that





di(t + T ) = di(t),
τij(t + T ) = τij(t),
aij(t + T )fj(u) = −aij(t)fj(−u),
bij(t + T )fj(u) = −bij(t)fj(−u),
cij(t + T )fj(u) = −cij(t)fj(−u),
Ii(t + T ) = −Ii(t),

cij(t + T )
∫ t+T

−∞
kij(t + T − s)fj(uj)ds

= −cij(t)
∫ t

−∞
kij(t− s)fj(uj)ds

for all t, u ∈ R.

(H2) The sequence of times {tk}(k ∈ N satisfies tk <
tk+1 and limk→+∞ tk = +∞, and δik satisfies −2 ≤
δik ≤ 0 for i ∈ {1, 2, . . . , n} and k ∈ N .

(H3) There exists a q ∈ N such that δi(k+q) =
δik, tk+q = tk + q, k ∈ N.

(H4) For each j ∈ {1, 2, · · · , n}, the activation func-
tion fj : R → R is continuous and there exists a
nonnegative constant Lf

j and Mf
j such that

fj(0) = 0, |fj(u)| ≤ Mf
j , |fj(u)−fj(v)| ≤ Lf

j |u−v|

for all u, v ∈ R.

(H5) There exist constants η > 0, λ > 0, i, j =
1, 2, · · · , n, such that for all t > 0,

(λ− d−i ) +
n∑

j=1

(
(āij + b̄ijk

+
ij + c̄ij)L

f
j

)
< −η < 0.

Let
x = (x1, x2, · · · , xn)T ∈ Rn,

in which “T” denotes the transposition. We define

|x| = (|x1|, |x2|, · · · , |xn|)T

and
||x|| = max

1≤i≤n
|xi|.

Obviously, the solution

x(t) = (x1(t), x2(t), . . . , xn(t))T

of (1) has components xi(t) piece-wise continuous on
(−τ, +∞), x(t) is differentiable on the open intervals
(tk−1, tk) and x(t+k ) exists.

Definition 1 Let u(t) : R → R be piece-wise contin-
uous function having countable number of discontin-
uous {tk}|+∞k=1 of the first kind. It is said to be T -anti-
periodic on R if

{
u(t + T ) = −u(t), t 6= tk,
u((tk + T )+) = −u(t+k ), k = 1, 2, · · · .

Definition 2 Let

x∗(t) = (x∗1(t), x
∗
2(t), · · · , x∗n(t))T

be an anti-periodic solution of (1) with initial value

ϕ∗ = (ϕ∗1(t), ϕ
∗
2(t), · · · , ϕ∗n(t))T .

If there exist constants λ > 0 and M > 1 such that
for every solution

x(t) = (x1(t), x2(t), . . . , xn(t))T

of (1) with an initial value

ϕ = (ϕ1(t), ϕ2(t), · · · , ϕn(t))T ,

|xi(t)− x∗i (t)| ≤ M‖ϕ− ϕ∗‖e−λt, for all t > 0,

where i = 1, 2, · · · , n and

‖ϕ− ϕ∗‖ = sup
−τ≤s≤0

max
1≤i≤n

|ϕi(s)− ϕ∗i (s)|.

Then x∗(t) is said to be globally exponentially stable.

The rest of this paper is organized as follows. In
the next section, we give some preliminary results. In
Section 3, we derive the existence of T -anti-periodic
solution, which is globally exponential stable. In Sec-
tion 4, we present an example to illustrate the effec-
tiveness of our main results. In Section 5, we a brief
conclusion is drawn.
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2 Preliminary Results
In this section, we present two important lemmas
which are used to prove our main results in Section
3.

Lemma 3 Let (H1)–(H4) hold. Suppose that

x(t) = (x1(t), x2(t), · · · , xn(t))T

is a solution of (1) with initial conditions

xi(s) = ϕi(s), |ϕi(s)| < γ, s ∈ [−τ, 0], (2)

where i = 1, 2, · · · , n. Then

|xi(t)| < γ, and |xi(t+k )| < γ, for all t ≥ 0, (3)

where i = 1, 2, · · · , n and

γ >
Θ
d−i

, (4)

Θ =
n∑

j=1

āijM
f
j +

n∑

j=1

b̄ijk
+
ijM

f
j

+
n∑

j=1

c̄ijM
f
j + Īi.

Proof. For any given initial condition, hypothe-
sis (H4) guarantee the existence and unique of x(t),
the solution to (1) in [−τ, +∞). By way of contra-
diction, we assume that (3) does not hold. Notice
that xi(t+k ) = (1 + δik)xi(tk) and by the assumption
(H2),−2 ≤ δik ≤ 0, then

|xi(t+k )| = |(1 + γik)||xi(tk)| ≤ |xi(tk)|.

Then if |xi(t+k )| ≥ γ, then |xi(tk)| ≥ γ. Thus we
may assume that there must exist i ∈ {1, 2, · · · , n}
and θ0 ∈ (tk, tk+1] such that for all t ∈ (−τ, θ0),

|xi(θ0)| = γ, and |xj(θ0)| < γ (5)

where j = 1, 2, · · · , n. By directly computing the up-
per left derivative of |xi(t)|, together with the assump-
tions (3), (4), (H4) and (5), we deduce that

0 ≤ D+(|xi(θ0)|)

≤ −di(θ0)xi(θ0) +

∣∣∣∣∣
n∑

j=1

aij(θ0)fj(xj(θ0))

+
n∑

j=1

bij(t)fj(xj(θ0 − τij(θ0)))

+
n∑

j=1

cij(θ0)
∫ θ0

−∞
kij(θ0 − s)fj(xj(s))ds

+Ii(θ0)

∣∣∣∣∣

≤ −d−i γ +
n∑

j=1

|aij(θ0)||fj(xj(θ0))|

+
n∑

j=1

|bij(t)||fj(xj(θ0 − τij(θ0)))|

+
n∑

j=1

|cij(θ0)|
∫ θ0

−∞
|kij(θ0 − s)|

×|fj(xj(s))|ds + |Ii(θ0)|

≤ −d−i γ +
n∑

j=1

āijM
f
j +

n∑

j=1

b̄ijk
+
ijM

f
j

+
n∑

j=1

c̄ijM
f
j + Īi < 0, (6)

which is a contradiction and implies that (3) holds.
This completes the proof.

Lemma 4 Suppose that (H1)–(H5) hold. Let

x∗(t) = (x∗1(t), x
∗
2(t), · · · , x∗n(t))T

be the solution of (1) with initial value

ϕ∗ = (ϕ∗1(t), ϕ
∗
2(t), · · · , ϕ∗n(t))T ,

and
x(t) = (x1(t), x2(t), . . . , xn(t))T

be the solution of (1) with initial value

ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T .

Then there exist constants λ > 0 and M > 1 such
that for all t > 0,

|xi(t)− x∗i (t)| ≤ M‖ϕ− ϕ∗‖e−λt,

where i = 1, 2, · · · , n.

Proof. Let

y(t) = {yi(t)} = {xi(t)− x∗i (t)} = x(t)− x∗(t).

Then

y
′
i(t) = −di(t)[xi(t)− x∗i (t)]

+
n∑

j=1

aij(t)[fj(xj(t))− fj(x∗j (t))]

+
n∑

j=1

bij(t)[fj(xj(t− τij(t)))

−fj(x∗j (t− τij(t)))]

+
n∑

j=1

cij(t)
∫ t

−∞
kij(t− s)

×[fj(xj(s))− fj(x∗j (s))]ds, (7)

yi(t+k ) = (1 + γik)yi(tk), k = 1, 2, . . . , (8)
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where i = 1, 2, · · · , n. Next, define a Lyapunov func-
tional as

Vi(t) = |yi(t)|eλt, i = 1, 2, · · · , n. (9)

It follows from (7), (8) and (9) that

D+(Vi(t))

≤ D+(|yi(t)|)eλt + λ|yi(t)|eλt

≤ (λ− d−i )|yi(t)|eλt

+

[
n∑

j=1

|aij(t)||fj(xj(t))− fj(x∗j (t))|

+
n∑

j=1

|bij(t)||fj(xj(t− τij(t)))

−fj(x∗j (t− τij(t)))|

+
n∑

j=1

|cij(t)|
∫ t

−∞
|kij(t− s)|

×|fj(xj(s))− fj(x∗j (s))|ds

]
eλt

≤ (λ− d−i )|yi(t)|eλt +
n∑

j=1

āijL
f
j |yj(t)|eλt

+
n∑

j=1

b̄ijk
+
ijL

f
j |yj(t− τij(t))|eλt

+
n∑

j=1

c̄ijL
f
j |yj(t)|eλt, t 6= tk, (10)

and

Vi(t+k ) = |yi(t+k )|eλtk

= |xi(t+k )− x∗i (t
+
k )|eλtk

= |1 + δik|yi(tk)|eλtk , (11)

where i = 1, 2, · · · , n. Let M > 1 denote an arbitrary
real number and set

‖ϕ− ϕ∗‖ = sup
−τ≤s≤0

max
1≤j≤n

|ϕj(s)− ϕ∗j (s)| > 0,

where j = 1, 2, . . . , n. Then by (9), we have

Vi(t) = |yi(t)|eλt < M‖ϕ−ϕ∗‖, for all t ∈ [−∞, 0],

where i = 1, 2, · · · , n. Thus we can claim that

Vi(t) = |yi(t)|eλt < M‖ϕ− ϕ∗‖, (12)

for all t ∈ [−∞, t1], i = 1, 2, . . . , n. Otherwise, there
must exist i ∈ {1, 2, · · · , n} and τ0 ∈ (−τ, t1] such
that

Vi(σ0) = M‖ϕ− ϕ∗‖, Vj(t) < M‖ϕ− ϕ∗‖, (13)

for all t ∈ [−τ, τ0), j = 1, 2, . . . , n. Combining (10),
(11) with (12), we obtain

0 ≤ D+(Vi(τ0)−M‖ϕ− ϕ∗‖)
= D+(Vi(τ0))

≤ (λ− d−i )|yi(τ0)|eλτ0

+
n∑

j=1

āijL
f
j |yj(τ0)|eλτ0

+
n∑

j=1

b̄ijk
+
ijL

f
j |yj(τ0 − τij(τ0))|eλτ0

+
n∑

j=1

c̄ijL
f
j |yj(τ0)|eλτ0

= (λ− d−i )|yi(τ0)|eλτ0

+
n∑

j=1

āijL
f
j |yj(τ0)|eλτ0

+
n∑

j=1

b̄ijk
+
ijL

f
j |yj(τ0 − τij(τ0))|

×eλ(τ0−τij(τ0))eλτij(τ0)

+
n∑

j=1

c̄ijL
f
j |yj(τ0)|eλτ0

≤ (λ− d−i )M‖ϕ− ϕ∗‖

+
n∑

j=1

āijL
f
j M‖ϕ− ϕ∗‖

+
n∑

j=1

b̄ijk
+
ijL

f
j M‖ϕ− ϕ∗‖eλτ

+
n∑

j=1

c̄ijL
f
j M‖ϕ− ϕ∗‖

=

[
(λ− d−i ) +

n∑

j=1

(
(āij + b̄ijk

+
ij

+c̄ij)L
f
j

)]
×M‖ϕ− ϕ∗‖. (14)

Then

(λ− d−i ) +
n∑

j=1

(
(āij + b̄ijk

+
ij + c̄ij)L

f
j

)
> 0,

which contradicts (H5), then (12) holds. In view of
(12), we know that

Vi(t1) = |yi(t1)|eλt1 < M‖ϕ− ϕ∗‖, i = 1, 2, · · ·
and

Vi(t+1 ) = |1 + γi1||yi(t1)|eλt1 ≤ |yi(t1)|eλt1 .
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Then
Vi(t+1 ) < M‖ϕ− ϕ∗‖. (15)

Thus, for t ∈ [t1, t2], we can repeat the above proce-
dure and obtain

Vi(t) = |yi(t)|eλt < M‖ϕ− ϕ∗‖, for all t ∈ [t1, t2],

where i = 1, 2, · · · . Similarly, we have

Vi(t) = |yi(t)|eλt < M‖ϕ− ϕ∗‖, for all t > 0,

where i = 1, 2, · · · . Namely,

|xi(t)−x∗i (t)| = |yi(t)| < M‖ϕ−ϕ∗‖, for all t > 0,

where i = 1, 2, · · · . This completes the proof.

Remark 5 If x∗(t) = (x∗1(t), x∗2(t), · · · , x∗n(t))T is a
T -anti-periodic solution of (1), it follows from Lemma
4 and the Definition 2 that x∗(t) is globally exponen-
tially stable.

3 Main results

In this section,we present our main result that there
exists the exponentially stable anti-periodic solution
of (1).

Theorem 6 Assume that (H1)–(H5) are satisfied.
Then (1) has exactly one T -anti-periodic solution
x∗(t). Moreover, this solution is globally exponen-
tially stable.

Proof. Let v(t) = (v1(t), v2(t), · · · , vn(t))T be a
solution of (1) with initial conditions

vi(s) = ϕv
i (s), |ϕv

i (s)| < γ, s ∈ (−τ, 0], (16)

where i = 1, 2, · · · , n. Thus according to Lemma 3,
the solution v(t) is bounded and

|vi(t)| < γ, for all t ∈ R, i = 1, 2, · · · , n. (17)

From (1), we obtain

((−1)p+1vi(t + (p + 1)T ))′

= (−1)p+1
{
− di(t + (p + 1)T )

×xi(t + (p + 1)T )

+
n∑

j=1

aij(t + (p + 1)T )

×fj(xj(t + (p + 1)T ))

+
n∑

j=1

bij(t + (p + 1)T )

×fj(xj(t + (p + 1)T

−τij(t + (p + 1)T )))

+
n∑

j=1

cij(t + (p + 1)T )

×
∫ t+(p+1)T

−∞
kij(t + (p + 1)T − s)

×fj(xj(s))ds + Ii(t + (p + 1)T )
}

= −di(t)(−1)p+1xi(t + (p + 1)T )

+
n∑

j=1

aij(t)fj((−1)p+1xj(t + (p + 1)T ))

+
n∑

j=1

bij(t)fj((−1)p+1xj(t + (p + 1)T

−τij(t))) +
n∑

j=1

cij(t)
∫ t

−∞
kij(t− s)

×fj(xj(s))ds + Ii(t), t 6= tk (18)

and

(−1)p+1vi(tk + (p + 1)T )+)
= (−1)p+1(1 + γi(k+(p+1)q)

×vi(tk + (p + 1)T ))
= (−1)p+1(1 + γik)vi(tk + (p + 1)T )
= (1 + γik)((−1)p+1

×vi(tk + (p + 1)T )), (19)

where i = 1, 2, · · · , n, k = 1, 2, · · ·. Thus
(−1)p+1v(t + (p + 1)T ) are the solutions of (1) on
R for any natural number p. Then, from Lemma 4,
there exists a constant M > 1 such that

|(−1)p+1vi(t + (p + 1)T )

−(−1)kvi(t + pT )|
≤ Me−λ(t+pT )

× sup
−∞≤s≤0

max
1≤i≤n

|vi(s + T ) + vi(s)|

≤ 2e−λ(t+pT )Mγ, (20)

and

|(−1)p+1vi((tk + (p + 1)T )+)
−(−1)pvi((tk + pT )+)|

= |xi((tk + (p + 1)T )+)
+xi((tk + pT )+)|

= |1 + δik||xi(tk + (p + 1)T )
+xi(tk + pT )|

≤ 2Mγe−λ(pT+tk), (21)

where k ∈ N, i = 1, 2, · · · , n. Thus, for any natural
number q, we have

(−1)q+1vi(t + (q + 1)T )
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= vi(t) +
q∑

k=0

[(−1)k+1vi(t + (k + 1)T )

−(−1)kvi(t + kT )], t 6= tk. (22)

Hence

|(−1)q+1vi(t + (q + 1)T )|

≤ |vi(t)|+
q∑

k=0

|(−1)k+1vi(t + (k + 1)T )

−(−1)kvi(t + kT )|, t 6= tk, (23)

and

|(−1)q+1vi((tk + (q + 1)T )+)|
= |(1 + δik)(−1)q+1vi(tk + (q + 1)T )|
≤ |(−1)q+1vi(tk + (q + 1)T )|. (24)

where i = 1, 2, · · · , n. It follows from (20)–(24) that
(−1)q+1vi(t + (q + 1)T ) is a fundamental sequence
on any compact set of R. Obviously, {(−1)qv(t +
qT )} uniformly converges to a piece-wise continuous
function x∗(t) = (x∗1(t), x∗2(t), · · · , x∗n(t))T on any
compact set of R.

Now we show that x∗(t) is T -anti-periodic solu-
tion of (1). Firstly, x∗(t) is T -anti-periodic, since

x∗(t + T )
= lim

q→∞(−1)qv(t + T + qT )

= − lim
(q+1)→∞

(−1)q+1v(t + (q + 1)T )

= −x∗(t), t 6= tk, (25)

and

x∗((t + T )+)
= lim

q→∞(−1)qv((t + T + qT )+)

= − lim
(q+1)→∞

(−1)q+1v((t + (q + 1)T )+)

= −x∗(tk)+. (26)

In the sequel, we prove that x∗(t) is a solution of (1).
Noting that the right-hand side of (1) is piece-wise
continuous, (18) and (19) imply that {((−1)q+1v(t +
(q+1)T ))′} uniformly converges to a piece-wise con-
tinuous function on any compact subset of R. Thus,
letting q →∞ on both sides of (18) and (19), we can

easily obtain




ẋ∗i (t) = −di(t)x∗i (t) +
n∑

j=1

aij(t)fj(x∗j (t))

+
n∑

j=1

bij(t)fj(x∗j (t− τij(t)))

+
n∑

j=1

cij(t)
∫ t

−∞
kij(t− s)fj(x∗j (s))ds

+ Ii(t), t 6= tk,
xi
∗(t+k ) = (1 + δik)x∗i (tk), k = 1, 2, . . . ,

(27)
where i = 1, 2, . . . , n. Therefore, x∗(t) is a solution
of (1). Applying Lemma 4, we can easily check that
x∗(t) is globally exponentially stable. The proof of
Theorem 6 is completed.

4 An example

In this section, we give an example to illustrate our
main results obtained in previous sections. Let n = 2,
consider the high-order cellular neural networks with
delays and impulses




ẋ1(t) = −d1(t)x1(t) +
2∑

j=1

a1j(t)fj(xj(t))

+
2∑

j=1

b1j(t)fj(xj(t− τ1j(t)))

+
2∑

j=1

c1j(t)
∫ t

−∞
k1j(t− s)fj(x∗j (s))ds

+ I1(t), t 6= tk,

ẋ2(t) = −d2(t)x2(t) +
2∑

j=1

a2j(t)fj(xj(t))

+
2∑

j=1

b2j(t)fj(xj(t− τ2j(t)))

+
2∑

j=1

cij(t)
∫ t

−∞
kij(t− s)fj(x∗j (s))ds

+ I2(t), t 6= tk,
x1(t+k ) = (1 + δ1k)x∗i (tk), k = 1, 2, · · · ,
x2(t+k ) = (1 + δ2k)x∗i (tk), k = 1, 2, · · · ,

(28)
where

fj(u) =
1
2
(|u− 1| − |u− 1|)(i = 1, 2),

kij(s) = 1, τij(t) = 1, k+
ij = 1, i, j = 1, 2

and [
d1(t) d2(t)
I1(t) I2(t)

]
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=

[
3 + | cos t| 3.2 + | sin t|

2 sin t 3 sin t

]
,

[
a11(t) a12(t)
a21(t) a22(t)

]

=

[
1
10 | sin t| 1

10 | cos t|
1
8 | cos t| 1

6 | sin t|

]
,

[
b11(t) b12(t)
b21(t) b22(t)

]

=

[
1
5 | sin t| 1

6 | cos t|
1
4 | cos t| 1

3 | sin t|

]
,

[
c11(t) c12(t)
c21(t) c22(t)

]

=

[
1
2 | sin t| 1

4 | sin t|
1
2 | cos t| 1

4 | cos t|

]
.

Then Lf
j = Mf

j = 1, d−1 = 2, d−2 = 2.2 and
[

ā11 ā12

ā21 ā22

]
=

[
1
10

1
10

1
8

1
6

]
,

[
b̄11 b̄12

b̄21 b̄22

]
=

[
1
5

1
6

1
4

1
3

]
,

[
c̄11 c̄12

c̄21 c̄22

]
=

[
1
2

1
4

1
2

1
4

]
.

Let η = 0.1 and λ = 0.5. Then

(λ− d−1 ) +
2∑

j=1

(
(ā1j + b̄1jk

+
1j

+ c̄1j)L
f
j

)

= (0.5− 2) +
(

1
10

+
1
10

+
1
5

+
1
6

+
1
2

+
1
4

)

= −0.1833 < −0.1 < 0,

(λ− d−2 ) +
2∑

j=1

(
(ā2j + b̄2jk

+
2j

+ c̄2j)L
f
j

)

= (0.5− 2.2) +
(

1
8

+
1
6

+
1
4

+
1
3

+
1
2

+
1
4

)

= −0.075 < −0.1 < 0,

which implies that system (28) satisfies all the condi-
tions in Theorem 6. Thus we can conclude that system

(28) has exactly one π-anti-periodic solution. More-
over, this solution is globally exponentially stable.

5 Conclusions

In this paper, we investigate a class of cellular neural
networks with impulsive effects. With the aid of dif-
ferential inequality techniques, a series of very verifi-
able criteria on the existence and exponential stability
of anti-periodic solutions for the cellular neural net-
works are established. Our results are new and com-
plementary to previously known results. Finally, an
example is given to illustrate the feasibility and effec-
tiveness of our main results.
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